

1 **Intraspecific trait variability and community assembly in hawkmoths**

2 **(Lepidoptera: *Sphingidae*) across an elevational gradient in the eastern**

3 **Himalayas, India**

4

5 Mansi Mungee ^{1,2 *}

6 ORCID ID - 0000-0002-5452-7196

7 mansim@students.iiserpune.ac.in

8

9 Ramana Athreya

10 ORCID ID - 0000-0001-7141-7311

11 rathreya@iiserpune.ac.in

12

13 ¹ Indian Institute of Science Education and Research

14 Homi Bhabha Road, Pashan, Pune – 411008, Maharashtra, INDIA.

15 ² Wildlife Institute of India

16 P.O.Box # 18, Chandrabani, Dehradun – 248001, Uttarakhand, INDIA

17

18 * Corresponding author

19

20 **Abstract**

21 1. We investigated some aspects of hawkmoth community assembly at 13 elevations
22 along a 200-2770 m transect in the eastern Himalayas, a little studied biodiversity
23 hotspot of global importance. We measured the morphological traits of body-mass,
24 wing-loading, and wing aspect-ratio of 3301 free-ranging individuals of 76 species
25 without having to collect or even constrain them. We used these trait measurements
26 and *T-statistic* metrics to assess the strength of intra-community (“internal”) and
27 extra-community (“external”) filters which determine the composition of communities
28 *vis-a-vis* the regional pool of species.

29 2. The trait distribution of constituent species turned out to be non-random subsets of
30 the community trait distribution, providing strong evidence for internal filtering in all
31 elevational communities. The external filter metric was more ambiguous. However,
32 the elevational dependence of many metrics including that of the internal filter,
33 provided evidence for external (i.e. environmental) filtering. On average, a species
34 occupied as much as 50-75% of the total community trait space; yet the *T-statistic*
35 metric for internal filter was sufficiently sensitive to detect a strong non-random
36 structure in the trait distribution.

37 3. We suggest that the change of *T-statistic* metrics along the environmental gradient
38 may provide more clues to the process of community assembly than previously
39 envisaged. A large, smoothly varying and well sampled environmental span would
40 make it easier to discern them. Developing *T-statistics* for combined analysis of
41 multiple traits will perhaps provide a more accurate picture of internal/filtering and
42 niche complementarity. Moths are a hyper-diverse taxon and a very important
43 component of many ecosystems. Our technique for accurately measuring body and
44 wing dimensions of free-ranging moths can generate trait database for a large
45 number of individuals in a time- and resource-efficient manner for a variety of

46 community assembly studies using this important taxon.

47

48 **Key words:** community assembly, intraspecific variance, invertebrates, *Sphingidae*, *T-*
49 *statistics*

50

51

52

53 **1. Introduction**

54 Ecological processes which govern community assembly may be separated into two
55 categories, those causing either a convergence or a divergence of functional traits of
56 species co-occurring in a community (e.g. Weiher and Keddy 1995; Grime 2006; Weiher et
57 al. 2011; Enquist et al. 2015). The abiotic environment causes trait convergence by
58 constraining the trait values of all species in a community to a range that facilitates their
59 persistence in that habitat (e.g. Diaz et al. 1998; Weiher et al. 1998). On the other hand,
60 traits of co-occurring species are expected to diverge from each other to reduce ecological
61 similarity and hence debilitating competition (MacArthur and Levins 1967). Several metrics
62 of functional (trait) diversity have been used to characterise the distribution of species
63 mean traits in a community (Villéger et al. 2008; Mouchet et al. 2010), and detect
64 signatures of community assembly processes (e.g. Fonseca et al. 2000; Ackerly 2003;
65 Choler 2005; Swenson and Enquist 2007; Bryant et al. 2008, Baraloto et al. 2012; Pigot et
66 al. 2016). The importance of incorporating intraspecific trait variability (ITV) into such
67 studies has been increasingly recognised over the last decade (e.g. Cianciaruso et al.
68 2009; Hulshof et al. 2010; Jung et al. 2010; Albert et al. 2011; Bolnick et al. 2011; Paine et
69 al. 2011; Enquist et al. 2015).

70

71 However, biotic interactions like competitive exclusion (HilleRisLambers et al. 2012),

72 equalising fitness or facilitation (Grime 2006, Butterfield and Callaway 2013), and trait
73 trade-offs (e.g. Spasojevic and Suding 2012) have signatures similar to abiotic filters, while
74 microhabitat heterogeneity, an abiotic filter, can confound the signature of interspecific
75 competition (Violle et al. 2012). Therefore, Violle et al. (2012) recast community assembly
76 processes into two other categories: filters internal to the community (includes both biotic
77 and abiotic: e.g. interspecific competition and microhabitat heterogeneity) and filters
78 external to the community (both biotic and abiotic: e.g. climate, predators, etc). Internal
79 filters determine species co-existence within the community after the external filters have
80 filtered a subset from the larger regional pool into the community.

81

82 Violle et al. (2012) proposed *T-statistics*, a suite of three functional trait metrics, to identify
83 the external and internal filters contributing to community assembly across a region. In
84 their formulation the 'region' spans a range in environmental space, and each of the many
85 'communities' which make up the region are collections of species (the taxon of interest)
86 localised in small volumes within the regional environmental space. The *T-statistic* metrics
87 consist of variance ratios of functional traits across taxonomic (population, species and
88 community) and spatial (local and regional) scales to identify the operational filters. The
89 metrics have been utilised in two ways. Their directional change along an environmental
90 gradient is considered evidence of external filters (Hulshof et al. 2013; Le Bagousse-
91 Pinguet et al. 2014; Allgeier et al. 2017; Wu et al. 2019). Additionally, one can test for
92 deviation of the measured values of the metrics from those expected from randomness.
93 Significant deviation from randomness is considered evidence of the impact of an
94 ecological process on the trait distribution (Luo et al. 2016; Neyret et al. 2016; Outreman et
95 al. 2018; Danet et al. 2018; Xavier-Jordani et al. 2019; Khalil et al. 2019; Subedi et al.
96 2019; Zorger et al. 2019; Gusmão et al. 2020).

97

98 Community assembly studies using *T-statistics* require trait measurements of (many)
99 individuals of a species and therefore have mostly targeted plants with only a small
100 number of faunal studies: aphid parasitoids (Outreman et al. 2017), spiders (Gusmão et al.
101 2020), moths (Wu et al. 2019), and amphibians (Xavier-Jordani et al. 2019). The
102 relationship between traits and their functionality are more easily quantifiable in plants and
103 the traits are more easily measured for a large number of individuals (Lavorel et al. 2013;
104 Lamanna et al. 2014), than is the case with faunal taxa (Brousseau et al. 2018). While
105 museum samples do provide large repositories of specimens for trait measurements, they
106 are seldom compiled through systematic sampling efforts; most collections are composites
107 from multiple locations and periods.

108

109 The 13 studies of community assemblage using *T-statistics* (all cited previously) differ in
110 the taxa studied, nature of the gradient and species richness. Yet, some trends are already
111 visible: (i) in (almost) all cases trait distributions within a community are non-random
112 subsets, with individuals of a species clustered closer to each other than to other species,
113 (ii) communities may or may not be non-random subsets within the region; there is no
114 consistent pattern either within a study or across different studies, and (iii) the use of ITV
115 accentuates the non-random nature of communities within the region in most studies.
116 Other results, essentially correlations between the environment, *T-statistic* metrics, and
117 other community parameters (like species richness), varied across studies though not all
118 studies investigated all possible correlations. Such correlations contain clues to the identity
119 of the processes (e.g. niche v/s neutral) impacting community assembly (Violle et al.
120 2012).

121

122 Apart from those using *T-statistics*, only a few studies have dealt with changes in trait
123 distribution (of which variance is the simplest metric) with elevation (e.g. Baranovska &

124 Knapp 2017, Classen et al. 2017). In general, studies have reported increased variability in
125 traits under ‘favourable conditions’ at lower elevations where intra- and interspecific
126 competition drives trait divergence (Mayfield and Levine 2010; Ding et al. 2019), while
127 habitat filtering due to extreme environmental conditions at higher elevations is associated
128 with reduced trait variance (de Bello et al. 2009; Kraft and Ackerly 2010).

129

130 We present here a study of the roles of internal and external filters in community assembly
131 of hawkmoths in 13 elevational communities in the elevational range of 200-2770 m. We
132 analysed three key morphological traits (body mass, wing loading and wing aspect ratio) in
133 the *T-statistics* framework and with measurements of 3301 individual hawkmoths
134 (Lepidoptera: *Sphingidae*) belonging to 76 species. We also investigated the change of
135 community-wide variance of these traits with elevation.

136

137 The eastern Himalayas are among the most biologically diverse regions in the world
138 (Myers et al. 2000; Orme et al. 2005). Its large environmental gradient and biodiversity (of
139 which moths are a prime example) make an excellent combination for investigating the link
140 between environment and diversity. Very few ecological studies have been carried out
141 there despite their global importance. New species, of even distinctive vertebrate taxa,
142 continue to be described from the region (e.g. Sinha et al. 2005; Athreya 2006a; Sondhi
143 and Ohler 2011; Captain et al. 2019; Mirza et al. 2020). The entire list of research
144 publications on diversity patterns in the region is a short one: elevational gradient of bird
145 diversity (Acharya et al. 2011; Price et al. 2014; Surya & Keitt, 2019; Schumm et al. 2020),
146 tree diversity patterns and population structure (Bhuyan et al. 2003; Rana et al. 2019),
147 distribution and abundance of arthropods (Ghosh-Harihar 2013; Supriya et al. 2020;
148 Marathe et al. 2020).

149

150 Moths are a hyperdiverse insect taxon (Scoble and Hausmann 2007; Quimbayo et al.
151 2013), second only to Coleoptera. From our work we expect over 2000 moth species
152 across our elevational transect. On occasion we have recorded over 2500 individuals from
153 more than 200 species on our sampling screens at a single location on a single night. This
154 large species diversity and abundance provides opportunities to understand community
155 assembly with sufficient statistical strength at multiple levels: within a genus; within a
156 family; or across different families. Moth larvae are among the principal (most abundant)
157 herbivores and prey-base for insectivores in many ecosystems (Lill and Marquis 2003;
158 Supriya et al. 2020). The food-plant specificity of moth species makes for an intimate
159 linkage between plant and moth communities. These factors make them an excellent
160 system for long-term monitoring to understand the cascading effect of climate change on
161 primary producers and two trophic levels above them. We selected the hawkmoth family
162 because as a group they are easier to separate from other moths, and identify to (morpho)
163 species even from an image.

164

165 We selected the three traits of body mass, wing loading and wing aspect ratio because (i)
166 they impact multiple aspects of a moth's life history such as thermoregulation (Heinrich
167 1996; Dudley 2002; Dillon et al. 2006), dispersal (Athreya and Singh 1990; Azevedo et al.
168 1998; Lentink et al. 2007; Frazier et al. 2008; Gilchrist and Huey 2004; Rohner et al.
169 2018), reproduction (Suding and Goldstein 2008; Moretti et al. 2017), starvation resistance
170 (Lindsey 1966; Cushman et al. 1993), etc. and therefore should be functional response
171 traits and (ii) we were able to measure these traits from images of free-flying moths without
172 even momentarily constraining them, let alone collecting specimens (Mungee and Athreya
173 2020).

174

175 Based on the previous discussion we tested the following hypotheses in this study:

176 Hawkmoth elevational communities are not random subsets but bear the imprint of internal
177 and external filters (i.e. consequences of several ecological processes)

178 1. Internal filter: The distribution of trait values within a species in a community is not a
179 random subset of the trait values of all the individuals (regardless of species) within
180 that community.

181 2. External filter: The distribution of trait values of individuals of a community is not a
182 random subset of the trait values of all the individuals within the region.

183 Additionally, we tested a related hypothesis associated with community trait variance:

184 3. Community trait variance should decrease towards higher elevations as the harsher
185 conditions there should result in tighter constraints on trait dispersion.

186

187 We also tested for correlations between the metrics for internal and external filters on the
188 one hand, and species richness and elevation on the other.

189

190

191 **2. Methods & Materials**

192 *Study area and Field Sampling*

193 Hawkmoth sampling was carried out in Eaglenest Wildlife Sanctuary (see Athreya 2006b
194 for a detailed description of the sanctuary), a *Protected Area* of 218 km² located between
195 27° 02" 09' N and 92°18" 35' E in the eastern Himalayas of Arunachal Pradesh, northeast
196 India (Figure 1). The large elevational range of 3150 m coupled with high rainfall (> 3000
197 mm along the southern slopes) has resulted in diverse habitat types ranging from tropical
198 wet evergreen below 900 m to coniferous temperate forests above 2700 m (Champion and
199 Seth 1968). The high diversity of this region, believed to be due to its complex terrain and
200 its location at the confluence of the Oriental and Sino-Japanese floristic and faunistic
201 zones (Holt et al. 2013), makes it a globally important biodiversity hotspot (Orme et al.

202 2005).

203

204 Point sampling was carried out at UV illuminated screens on no-moon nights along a
205 vehicle track characterized by roadside scrub in close proximity to primary forest (5-20 m
206 away). The sampling was carried out in a single compact transect to reduce the impact of
207 variation in gamma diversity while sampling across widely separated transects (McCain
208 2007). The 12 elevations between 500 m and 2770 m, approximately 200 m apart, were
209 clustered in a small stretch spanning just 15 km. The 200 m location, near the village of
210 Tippi, was separated from its nearest neighbor by about 20 km due to the lack of access to
211 suitable habitat along this road (Figure 1). The sampling was completed during a single
212 breeding season (summer) in 2014, in April at 200 m, and May-July at the other elevations.

213

214 We set up portable UV screens (Mungee and Athreya 2020) between 7 PM and midnight
215 during the 7 days before and 3 days after the new moon, when the moon was below the
216 visible horizon during those 5 hours. We sampled at 2-5 elevations simultaneously to
217 achieve some degree of uniformity of weather conditions (which can change drastically
218 from day to day) across the elevational gradient. Hawkmoths which arrived at the screen
219 were photographed unfettered, in their natural posture against the reference grid printed
220 across the entire screen, then captured for marking (by clipping a tiny portion of the
221 forewing apex) to avoid double counting, and for collection of the two middle legs for DNA,
222 and subsequently released.

223

224 We aimed to collect similar number of total individuals at each elevation because of the
225 high daily variability observed in hawkmoth numbers at a light screen, even within the 10-
226 day no-moon period (Supplementary Figure A1). Previous studies have also reported high
227 fluctuations in moth activity due to local weather, temperature, wind, cloud, rains, etc.

228 (McGeachie 1989, Schulze and Fiedler 2003, Beck et al. 2008). It has been suggested
229 that the number of individuals is a better measure of the sampling effort for moths than the
230 number of trap nights (Willott 2001).

231

232 *Species identification and trait measurement*

233 We assigned individuals to morpho-species using the online resources made available by
234 Kitching and collaborators (<http://sphingidae.myspecies.info/>,
235 <http://tpittaway.tripod.com/china/china.htm>; Kitching 2019). We recorded a total of 4731
236 hawkmoth individuals from 13 elevational communities that could be identified to morpho-
237 species; it included 80 morphospecies from 30 genera and all 3 Sphingid subfamilies
238 (Sphinginae, Macroglossinae and Smerinthinae). The details are provided in
239 supplementary section A.

240

241 We measured body length, thorax width, wing costum length and wing breadth from field
242 images after calibration and distortion corrections (Mungee and Athreya 2020). We derived
243 from these primary measurements the three functional traits of body mass, wing loading
244 and wing aspect ratio. We could measure traits reliably for 3301 individuals (70% of the
245 identified sample) from 76 morphospecies and 30 genera. The rest either did not sit on the
246 gridded screen or image analysis showed high error in trait estimation. Supplementary
247 section B provides a brief description of the trait measurement procedure. More details
248 may be obtained from Mungee and Athreya (2020).

249

250 Apart from the *Trait data* set of 3301 individuals mentioned above, we repeated the
251 analyses for two other sets of data to understand the impact of incompleteness: (a)
252 *Diversity data* set of 4731 individuals: this included another 1430 individuals identified to
253 morphospecies whose traits could not be measured. We filled in the missing trait data by

254 randomly resampling the traits from others of the same species in the same community.
255 For example, we could measure traits for only 66 of the 79 individuals of the species
256 *Acosmerycoides harterti* at elevation 700 m. The remaining 13 individuals were assigned
257 trait values drawn at random from the set of 66 individuals. (b) *Trait data without E1700*:
258 The moth community from 1700 m elevation suffered a disproportionate loss of trait data.
259 Heavy rainfall towards the end of the session just after many moths had arrived at the
260 screen precluded photography against the gridded screen. So we transported the moths
261 individually to a nearby shelter and photographed them for species identification but
262 without trait information.

263

264 We assessed the completeness of our samples using taxonomic (of *diversity data set*) and
265 functional trait (of *trait data set*) rarefaction curves using R package *evolqg* (Melo et al.
266 2015; see Supplementary 1 for details).

267

268 *Environmental variables*

269 We explored the variation of 4 environmental variables along the elevational transect:
270 mean annual temperature (MAT), mean annual precipitation (APPT), plant productivity
271 (EVI: enhanced vegetation index) and air density (AD). MAT and APPT with a spatial
272 resolution of 1 km² were downloaded from **worldclim** (<https://www.worldclim.org/>) for the
273 years 2004-2014. EVI was obtained from NASA's MODIS satellite products (MOD13Q1)
274 with a resolution of 250 m. Temperature and productivity influence body size even in
275 ectotherms via behavioral thermoregulation (Zamora-Camacho et al. 2014) and resource
276 availability (McNab 2010). Precipitation was included as a predictor since it is expected to
277 influence productivity. Air density (and temperature) changes the viscosity of air which
278 impacts the flying ability of insects (Hassall 2015).

279

280 Principal component analysis of the 4 variables yielded a first principal component which
281 explained 91% of the variance (Supplementary Figure C2), and was strongly positively
282 correlated with elevation ($R^2 = 0.95$; $p < 0.005$; Supplementary Figure C3). We considered
283 using the first principal component as a composite environmental variable (e.g. Le
284 Bagousse-Pinguet et al. 2014; Subedi et al. 2019) but, as explained in the Discussion
285 (while comparing the environmental gradient in different studies), decided that the
286 elevation as an environmental surrogate was the better option. The details of the analysis
287 of the environmental data is provided in Supplementary section C.

288

289 *Trait variation across the elevational gradient*

290 We used two approaches to examine the response of hawkmoth community trait values
291 across the elevational gradient. First, we investigated the change of functional 'alpha'
292 diversity across the gradient using the community abundance-weighted mean trait value
293 (CWM; Lavorel et al. 2008). The CWM for the k -th community was calculated using
294 $CWM_k = \sum a_{ik} t_{ik}$ where a_{ik} is the relative abundance of the i -th species in the k -th
295 community, and t_{ik} is the mean of all the individuals of the i -th species within the k -th
296 community. The change of community mean with elevation was assessed using ordinary
297 least squares regression. We also calculated the CWM using regional species means:
298 $CWM_k = \sum a_{ik} t_i$, where a_{ik} is the relative abundance of the i -th species in the k -th
299 community, and t_i is the mean value for the i -th species across the entire region (i.e. all
300 communities).

301

302 Second, we quantified the change in trait across the gradient using the degree of overlap
303 of the kernel density distributions (area of intersection) for all pairs of communities, i.e.
304 essentially the functional 'beta' diversity (Mouillot et al. 2005). The kernel density
305 distributions were constructed in a non-parametric manner without assuming an underlying

306 distribution for community trait values (Carmona et al. 2016). We used ordinary least
307 square regression to examine the change in overlap for each trait (individually) with
308 increasing elevational distance between the communities.

309
310 *Internal and external filters influencing community assembly*

311 We employed *T-statistic* metrics (Viole et al. 2012) to infer the operation of internal and
312 external filters influencing hawkmoth community assembly across the elevational gradient.
313 In the context of this study, the ‘region’ spans the elevational range of 200-2770 m. It
314 consists of 13 elevational ‘communities’ separated from each other by about 200 m. The
315 region hosts many species, and the individuals of a species within a community constitute
316 a population; i.e. the populations of different species constitute a community.

317

318 Three variance ratios of *T-statistics* at nested spatial and taxonomic scales were obtained
319 as follows:

320 • Internal filter metric

321 $TIP/IC = \frac{\sigma_{IP}^2}{\sigma_{IC}^2}$, the ratio of the variance of trait values within a population (averaged
322 over all species in that community) to that of trait values of all individuals
323 (regardless of species) within the community.

324 • External filter metric using individual trait values

325 $TIC/IR = \frac{\sigma_{IC}^2}{\sigma_{IR}^2}$, the ratio of variance of trait values of individuals within a community
326 (regardless of species) to that of all individuals within the entire region.

327 • External filter metric using species mean values

328 $TPC/PR = \frac{\sigma_{PC}^2}{\sigma_{PR}^2}$, the ratio of variance of population mean trait values within a
329 community to that of population mean trait values within the regional pool

330

331 The observed metrics were compared to those obtained from the simulated null models
332 (obtained by randomising the actual data) to detect non-random trait structure within and
333 across communities. Details on generation of the null models are provided in
334 Supplementary Table D1. The standardized effect size (SES) of the deviation of the
335 observed value from the null model was calculated as:

336

$$SES = \frac{I_{obs} - I_{null}}{\sigma_{null}},$$

337 where I_{obs} is the observed value of a metric, and I_{null} and σ_{null} are the mean and standard
338 deviation of the simulated null model replicates.

339

340 Following Neyret et al. (2016) we calculated *T-statistics* using log-transformed values of
341 the traits to remove potential scaling effects between the mean value and the standard
342 deviation.

343

344 Though *T-statistic* parameters are closely related to each other, they provide subtly
345 different information. Taking the example of the internal filter metric: σ^2_{IP} , the intra-
346 population variance, is a measure of the average niche width of species. The intra-
347 community variance, σ^2_{IC} (calculated using individual trait values), is a measure of the
348 total niche space occupied by the community, in response to external constraints (filters).

349 Their ratio, which is $T_{IP/IC}$, is the niche width of a species relative to that of co-occurring
350 species in that community, i.e. it is a measure of processes which decide species
351 coexistence, of which interspecific competition is an oft-invoked example (e.g. MacArthur
352 and Levins 1967). The variation of this metric along environmental gradients has been
353 used in recent years to estimate the change in overall niche width and/or niche-packing
354 (e.g. Hulshof et al. 2013; Le Bagousse-Pinguet et al. 2014; Wu et al. 2019). On the other

355 hand, SES of $T_{IP/IC}$ estimates the degree of non-randomness of trait distribution within a
356 community, and hence is a measure of the strength of the internal filter; i.e. $T_{IP/IC}$ and
357 SES of $T_{IP/IC}$ are associated with the same process but are slightly different measures.

358 Apart from testing for the degree of deviation from randomness of the metrics we also
359 checked their correlation with elevation and species richness following Violle et al. (2012)

360

361 $T_{PC/PR}$ and $T_{IC/IR}$ have been contrasted in literature in a somewhat confusing language
362 as measuring the operation of external filters at the “level of species” and at the “level of
363 individuals”, whereas in actuality selection and filters operate at the level of individuals.
364 The terminology is meant to highlight the difference in the (statistical) ability to detect
365 external filtering when calculated with and without intraspecific variance.

366

367 We also assessed the relationship between the individual metrics on the one hand, and
368 elevation and species richness on the other using ordinary least square regression.

369

370 All the analyses were performed in the R programming software; version 3.4.4 (R
371 Development Core Team, 2015) using the following packages: *vegan* 2.5.4 for computing
372 species richness, diversity indices, taxonomic rarefaction curves and environmental
373 variables PCA scores (Oksanen et al. 2007); *evolqg* 0.2.6 for functional rarefaction curves
374 (Melo et al. 2015); *FD* 1.0.12 for CWM analysis (Laliberté et al. 2014); *sfsmisc* 1.1-3 for the
375 trait kernel density analysis (Maechler et al. 2019); and *cati* 0.99.2 (Taudiere and Violle
376 2016) for calculating the *T-statistics* and generating null models.

377

378 **3. Results**

379 The results presented here are for the *Trait* data set (3301 individuals). The results for the

380 *Diversity* data set are similar and are presented in Supplementary section E. The result for
381 the *Trait set without E1700* was also similar and so has not been shown.

382

383 *Trait variation across the environmental gradient*

384 Community weighted means of body mass and aspect ratio exhibited a significant positive
385 relationship with elevation (Table 1, Figure 2; body mass: $r^2 = 0.28, p < 0.05$; wing aspect
386 ratio: $r^2 = 0.64, p < 0.001$). The negative relationship between wing loading and elevation
387 was marginally less significant ($r^2 = 0.10, p = 0.10$). There was little difference when CWM
388 was calculated with and without incorporating intraspecific variation. The difference
389 between the slopes for the two cases was not statistically significant (body mass: Fisher's
390 $Z = 0.43, p = 0.33$; wing loading: $Z = -0.32, p = 0.37$; wing aspect ratio $Z = 0.19, p = 0.42$).

391

392 The reduction of trait overlap with increasing elevational distance (Figure 3) was significant
393 for all traits (Table 1, Figure 3; body mass: $r^2 = 0.21, p < 0.005$; wing loading: $r^2 = 0.05, p <$
394 0.05; wing aspect ratio: $r^2 = 0.25, p < 0.005$).

395

396 *Internal and external filters influencing community assembly*

397 *Deviations of communities from randomness*

398 The observed values of the three metrics of *T-statistics* are listed in Supplementary Table
399 D2. The observed SES values of the three *T-statistic* metrics and the distribution of the
400 same from simulated null models are provided in Supplementary Table D3. Traits for which
401 the SES values lie outside the 95 percent range of the null distribution are considered to
402 have a distribution which deviates significantly from randomness.

403

404 Figure 4 shows plots of SES for all three *T-statistic* metrics for all three traits *versus*
405 elevation. SES values of TIP/IC were significantly lower than the null model for all three

406 traits (in all 13 communities for body mass, and in 11 of 13 communities for wing loading
407 and wing aspect ratio; three of the four at the very edge), i.e. the dispersion of the trait
408 values of individual species within a community was smaller than the dispersion for the
409 community as a whole, indicating strong internal filtering. SES values of TIC/IR, an
410 indicator of external filters, was more variable. Values for body mass were significantly
411 lower than null at some communities at both ends of the elevational gradient but higher
412 than null in between. Values for wing loading were significantly lower than null in about half
413 the elevations but lay well above at 200m. Values of wing aspect ratio was significantly
414 different from null only at 200m (lower) and 700m (higher). In all, 12 community-trait pairs
415 were lower than the null distribution, 5 were higher, and 22 were consistent with the
416 communities being random subsets of the regional pool. SES values of TPC/PR were not
417 significantly different from null for any trait-community combination.

418

419 *Relationship between T-statistic metrics and elevation*

420 Both body mass and wing loading showed a trend in which the intra-population distribution
421 was increasingly closer to being a random subset of the intra-community distribution
422 towards higher elevation (two plots in the top row of Figure 4, Table 2). This is reflected in
423 a correlation between elevation and SES values of TIP/IC of body mass ($r^2 = 0.15$, $p =$
424 0.06) and wing loading ($r^2 = 0.52$, $p < 0.005$). In the case of wing loading we also observed
425 a negative correlation between elevation on the one hand and SES values of TIC/IR ($r^2 =$
426 0.47, $p < 0.05$) and of the related TPC/PR ($r^2 = 0.23$, $p = 0.05$). Interestingly, all the
427 communities in the case TPC/PR and half the communities in the case of TIC/IR were
428 actually consistent with being random subsets of the regional pool.

429

430 The regression results for the elevational dependence of intra-population variance (σ^2_{IP}),

431 intra-community variance (σ^2_{IC}), and the internal filter metric (TIP/IC) are shown in Figure
432 5 and Table 2. It should be noted that TIP/IC is the ratio of the other two quantities, having
433 intra-community variance in the denominator. Body mass showed no significant
434 relationship with elevation in any of the three parameters ($r^2 < 0.01$; $p = 0.32$ to 0.7). Wing
435 loading showed a significant relationship for intra-community variance ($r^2 < 0.49$; $p =$
436 0.004) and a marginal relationship for TIP/IC ($r^2 < 0.17$; $p = 0.09$) but none for intra-
437 population variance ($r^2 < 0.12$; $p = 0.13$). Wing aspect ratio showed a marginal relationship
438 for TIP/IC ($r^2 < 0.18$; $p = 0.08$) but none for intra-population and intra-community variances
439 ($r^2 \leq 0.1$; $p = 0.16$ - 0.95).

440

441 *Relationship between T-statistic metrics and species richness.*

442 The regression results for the species richness dependence of *T-statistic* metrics are listed
443 in Table 3. The statistically significant relationships, all associated with wing loading, are
444 plotted in Figure 6: intra-population variance σ^2_{IP} ($r^2 = 0.20$, $p = 0.07$), intra-community
445 variance σ^2_{IC} ($r^2 = 0.24$, $p = 0.05$), and TIP/IC ($r^2 = 0.16$, $p = 0.10$).

446

447 **4. Discussion**

448 We investigated aspects of community assembly of hawkmoths at 13 elevations across a
449 200-2770 m elevational gradient in the Eastern Himalayas. Specifically, we evaluated the
450 role of internal and external filters in deciding the composition of local communities derived
451 from the regional species pool. We measured body mass, wing loading and wing aspect
452 ratio of 3301 hawkmoth individuals from 76 species to evaluate the variation in community
453 trait metrics across this elevational gradient. We first showed that the three traits are
454 indeed “functional” response traits from their significant variation across the elevational
455 gradient. We found strong support for the role of internal filters for each of the three traits

456 in all communities using the corresponding *T-statistic* metric $T_{IP/IC}$ of Violle et al. (2012).
457 The metric $T_{IC/IR}$, which uses individual trait values, was less emphatic in its support for
458 the role of external filters in community assembly. The corresponding metric for external
459 filters using species mean trait values, $T_{PC/PR}$, was not significantly different from the null
460 expectation of no external filter. However, the role of external filters was evident from the
461 change in community mean values of the three traits. Finally, we showed that the presence
462 of external filters may also be inferred from the directional change in any metric across the
463 elevational range, including the standardised effect size (SES) of $T_{IP/IC}$; hitherto, this
464 metric has been used only as an indicator of internal filters.

465

466 The eastern Himalayas are among the most important and yet the least studied, of global
467 biodiversity hotspots. We did not come across any previous systematic collection of
468 individual-level trait data for any faunal group from the region. Our intensive sampling
469 effort in a single compact region during a single season yielded 80 hawkmoth species. In
470 comparison, the checklist of hawkmoths for all of India is only a factor three higher
471 (Kitching et al. 2014). Similarly, hawkmoth checklists of many countries in neighbouring
472 south-east Asia consists of 100-160 species (Beck and Kitching, 2009), suggesting that we
473 have achieved a good degree of completeness in sampling the hawkmoth community. We
474 also confirmed the adequacy of the sampling effort using rarefaction curves for both
475 species (Supplementary Figure A2) and traits (Supplementary Figure A4).

476

477 *Environmental gradient*

478 Identifying the most important environmental factor and its mechanistic role in community
479 assembly is a difficult exercise. Of the previous studies using *T-statistics*, three used non-
480 parametric environmental classes (Neyret et al. 2016; Danet et al. 2018; Khalil et al. 2019),

481 five used a surrogate (latitude: Hulshof et al. 2013; Outreman et al. 2017; elevation:
482 Hulshof et al. 2013; Luo et al. 2016; Neyret et al. 2016; Wu et al. 2019), one used
483 precipitation and anthropogenic disturbance (Zorger et al. 2019), two dealt with multiple
484 variables (Le Bagousse-Pinguet et al. 2014; Subedi et al. 2019), and two did not have an
485 obvious gradient (Xavier-Jordani et al. 2019; Gusmão et al. 2020). Even when the gradient
486 is obvious, teasing apart the confounding factors can be difficult. The three elevational
487 gradients that Hulshof et al. (2013) studied at 3 latitudes are complicated by confounding
488 factors like species composition (broad-leaved v/s conifers) and location (proximity to the
489 sea; tropics v/s temperate). Furthermore, the terms low- and high-elevation are very
490 contextual, with 2600 m in south-west China termed low (Luo et al. 2016) and 1111 m in
491 Costa Rica labeled high (Hulshof et al. 2013). We suggest that elevational gradients which
492 span both “tropical” and “temperate” regimes (e.g. Neyret et al. 2016; Wu et al. 2019) offer
493 the best opportunities for understanding the impact of environment in community
494 assembly.

495

496 In our study temperature, precipitation, air density and primary productivity, all of which
497 can affect moth body mass and wing dimension, changed along the elevational gradient.
498 We note that our elevational range corresponds to a mean annual temperature change of
499 10-24°C, or an equivalent latitudinal change of 20°, or 2200 km. The habitats range from
500 wet tropical forests below 1000 m to temperate broad-leaved forests of birch and
501 rhododendron at 2770 m. Our 13 sampling locations were all in a compact region (less
502 than 20 km), spaced about 200 m in elevation, and on slopes facing the monsoon winds.
503 Therefore, environmental gradient was substantially large, smoothly varying and regularly
504 sampled.

505

506 Some authors have used the principal component analysis to define a composite

507 environmental variable when dealing with multiple variables (Le Bagousse-Pinguet et al.
508 2014; Subedi et al. 2019). While this has the advantage of utilising all measured variables,
509 there is no obvious way of quantifying the role of this artificial variable in any ecological
510 process. Furthermore, since its construction is entirely phenomenological the composite
511 variable will be unique to each study, precluding both comparison of results and combining
512 data across studies. Alternatively, one can simply use the surrogate itself, especially if it is
513 highly correlated with the composite – the elevation in our case. In its favour, elevation is a
514 well defined quantity for comparing results across studies and one which can be used to
515 average data in a meta analysis.

516

517 *Trait variation across the elevational gradient*

518 Body mass and wing aspect ratio showed a significant change in the community mean
519 value along the elevational gradient. The regression of community mean of wing loading
520 was marginally significant at $p = 0.1$ but fell well below the threshold without the 200 m
521 data point. However, trait overlap between pairs of communities (effectively functional
522 “beta” diversity) decreased with increasing elevational distance between them for all three
523 traits. These results indicate that hawkmoth body mass, wing loading, and wing aspect
524 ratio are indeed responding to the continuously varying environmental gradient. Therefore,
525 these traits qualify as ‘functional response traits’ (Weiher and Keddy 1995; Suding and
526 Goldstein 2008; Funk et al. 2017). Many studies have demonstrated a correspondence
527 between species morphological traits (morphospace) and their ‘performance’ or functional
528 strategies (Price et al. 2014; Pigot et al. 2016; Dehling et al. 2016). For instance, Pigot et
529 al. (2016) found that key dimensions of the ecological niche in passerines, including diet,
530 foraging maneuver and foraging substrate were, to varying extents, predictable on the
531 basis of morphological traits. Ecco-geographic studies, which investigate the change of trait
532 values along an environmental gradient (e.g. Bergmann’s rule), have a long history. We

533 will be presenting the results of a more detailed study of elevational patterns of body mass,
534 wing loading and wing aspect ratio in a different publication. In this paper, the elevational
535 patterns of these traits only serve the limited purpose of demonstrating that they are
536 indeed functional response traits.

537

538 Interestingly, the only other study of moth community assembly that we encountered used
539 “image complexity” as a trait (Wu et al. 2019). They characterised the colour patterns on
540 moth specimen images using a vector with 2048 dimensions. They then collapse all these
541 dimensions into a single measure of “distance of pattern complexity” between specimens.
542 As the authors themselves admit, it is not clear what this single “trait” represents or what
543 selection pressure this may be responding to.

544

545 *Community Assembly*

546 The realized and fundamental niches of co-occurring species, are key to understanding
547 how local communities are assembled from a ‘regional’ species pool (Kraft et al. 2008). We
548 principally relied on *T-statistic* metrics to investigate the role of internal and external filters
549 in community assembly.

550

551 *Internal filters*

552 In our study, 35 out of the 39 trait-community combinations showed strong internal filtering
553 with another 3 being marginally so (Figure 4, top row). This strong signature of internal
554 filtering is consistent with the results from all studies using *T-statistics* (cited throughout
555 this paper). However, TIP/IC was not correlated with species richness (Table 3) suggesting
556 a neutral process of community assembly (Clark 2010; Clark et al. 2010), which at first
557 sight contradicts the non-randomness of the community. The mean values of TIP/IC (i.e.
558 average variance ratios of within-species to across-community) are 0.22 for body mass,

559 0.56 for wing loading and 0.54 for wing aspect ratio. i.e. the average standard deviation
560 ratios of within-species to across-community are 47%, 75% and 73%, respectively. These
561 are not small fractions, i.e. most species occupy a large fraction of the community trait
562 space, recalling the prediction of neutral theory. Values of TIP/IC in previous studies,
563 where they have been reported, are also in the range 0.2-0.6 (e.g. Hulshof et al. 2013; Luo
564 et al. 2016). Of course, the niche of any species is multidimensional and the fractional
565 occupancy in this hypervolume would be the product of the fractional occupancies along
566 all trait dimensions. So, even while it seems that any single species occupies a large
567 fraction of the available space along any single trait axis, it is likely that they segregate
568 quite well in the niche hypervolume. Clearly, combined analysis of multiple traits is
569 indicated. We draw attention to the ability of TIP/IC to detect non-randomness in
570 intraspecific *vis-a-vis* intra-community trait structure even when individual species occupy
571 up to 75% of the community trait space.

572

573 *External filters*

574 More than half of the trait-community combinations were consistent with the communities
575 being random subsets of the regional pool (using $T_{IC/IR}$; Figure 4, middle row). Previous
576 studies have also reported that $T_{IC/IR}$ does not provide consistent evidence for external
577 filtering across an environmental gradient. The metric $T_{PC/PR}$, which measures external
578 filtering while ignoring intraspecific variance, showed an even lower degree of non-
579 randomness than $T_{IC/IR}$ (Figure 4, bottom row). This is consistent with previous results
580 which have highlighted the importance of using intraspecific variance while studying
581 community assembly (e.g. Cianciaruso et al. 2009; Hulshof et al. 2010; Jung et al. 2010;
582 Albert et al. 2011; Bolnick et al. 2011; Paine et al. 2011; Enquist et al. 2015).

583

584 Any directional variation of any trait quantity (mean, variance or any other metric) across
585 an environmental gradient is a sign of an external filter (Weiher and Keddy 1995;
586 HilleRisLambers et al. 2012). Therefore, the evidence for demonstrating that the three
587 traits are indeed functional (Figures 2 and 3) will also serve as evidence for an external
588 filter.

589

590 The strength of the internal filter (SES of $T_{IP/IC}$) changed across the elevational gradient
591 in our study. Body mass and wing loading showed a significant linear pattern with elevation
592 while wing aspect ratio showed a mid-elevation trough. However, in the absence of a
593 theoretical justification for fitting higher order polynomials we have refrained from
594 interpreting this wing aspect ratio pattern. Ironically, this variation of the internal filter
595 across the environmental gradient, as with any other trait metric, is also evidence for the
596 action of an external filter. Such a variation has only been reported previously by Zorger et
597 al. (2019). We suggest that this pattern was discernible in this study because the
598 environmental range was large (spanning both tropical and temperate biomes), continuous
599 and closely sampled (every 200 m).

600

601 The decrease in structuring from lower to higher elevations has been previously linked to
602 higher species diversity, and hence competition, at lower elevations (Callaway 1998; Wang
603 et al. 2008; Spasojevic and Suding 2012). However, only wing loading (community
604 variance, SES of $T_{IP/IC}$, and SES of $T_{IC/IR}$) showed a significant correlation with species
605 richness (Table 3; Figure 6).

606

607 Curiously, in the case of body mass, while the degree of randomness of $T_{IP/IC}$ (SES of
608 $T_{IP/IC}$) showed a significant change with elevation, none of its constituents (σ_{IP} , σ_{IC} , or
609 even their ratio $T_{IP/IC}$) showed such a relationship (Table 2). We note that variances and

means are only the simplest parameters of a distribution (of traits), and distributions having the same mean and variance can be very different from each other (e.g. a normal and a uniform distribution). The test for randomness takes into account the details of the distribution of values rather than just their mean and variance. Conversely, even though the SES of TPC/PR of body mass and wing loading lay well within the null model envelopes, they exhibited a definite pattern (linear or otherwise) with elevation (Figure 4, bottom row). This has also been observed by Zorger et al. (2019). Therefore, the action of an external filter can be discerned in two different ways: (i) the usual one of communities being non-random subsets of the regional pool, and (ii) a directional variation of *any* metric along the environmental gradient. Further, the different quantities that constitute a *T-statistic* metric (e.g. σ^2_{IP} , σ_{IC} , their ratio TIP/IC, and SES of TIP/IC) do not always correlate the same way with other variables (e.g. elevation or species richness). Perhaps, these metrics carry more information than hitherto envisaged but interpreting them requires more simulations and carefully designed field studies.

624

625 *Community variance of traits with elevation*

626 The community variance of wing loading showed a significant reduction with elevation as
627 we had hypothesised (Fig. 5, Table 2), but not of body mass and wing aspect ratio. Wing
628 loading determines the efficiency and ease of flight and therefore is a key ecological trait
629 governing mobility for foraging, predator avoidance, finding mates and dispersal
630 (Pennycuick 1971; Norberg 1985; Nachtigall 1985; Alerstam et al. 2007). Correlations
631 between flight capacity and latitude or elevation have been documented in several species
632 at intra- and inter-specific levels (Hassall 2015; Rohner et al. 2015; Rohner et al. 2018),
633 but seldom at the community level (Classen et al. 2017; Brehm et al. 2019). The reduction
634 of variance with elevation is consistent with higher environmental selection/filtering on wing
635 loading and may indicate the importance of associated functions such as dispersal in the

636 search for resources in a difficult and patchy environment.

637

638 It is not surprising that the change of community variance with elevation is trait specific
639 since the intensity of selection along a gradient should differ between traits. Indeed,
640 Classen et al. (2017) reported opposite trends for intraspecific and interspecific variance of
641 some traits with elevation in honey bees. They explained this in terms of two conflicting
642 considerations: a physiological requirement which favours increasing body size with
643 reducing temperature (or Bergmann's rule; see, for example, Van Voorhies 1996;
644 Blackburn et al. 1999) and species-energy theories which selects for reduction in body
645 mass with elevation (e.g. Brown & Maurer 1989; Rodriguez et al. 2008). Translating these
646 intra- and inter-specific results to predict the result at the community level requires a more
647 carefully structured study which is beyond the scope of this work.

648

649 Any study such as this necessarily can only deal with a very limited subset of the diversity
650 of an area. Hawkmoths are likely to be in competition with not only moths of other families
651 but also other herbivores (insects and others) in the ecosystem. Internal filters, to which
652 interspecific competition is a likely contributor, has been observed to play a significant role
653 in this and other studies of many taxa. Whether or not a similar study which includes
654 several faunal groups will reach the same conclusion is an open question. The addition of
655 other taxa into this mix can only increase the already high overlap in species trait values
656 within a community (discussed earlier).

657

658 Collection and preservation of museum specimens, though useful in many ways, can add
659 a large financial cost to a study of traits. In this study, we accurately measured the traits of
660 free-ranging moths without collecting them or even constraining them in any manner. This
661 strategy lends itself to a logically simple and inexpensive way of compiling large multi-

662 epoch trait databases to understand how faunal populations are responding to a changing
663 environment, whether due to global climate change or land-use pattern change of
664 anthropogenic origin.

665

666 In conclusion, we have shown that both internal and external filters have influenced the
667 assembly of the hawkmoth community in the eastern Himalayas. The *T-statistic* metrics
668 that we used have many subtle aspects (like the difference between TIC/IR and SES of
669 TIC/IR) which may provide more insights into community assembly. An examination of
670 previous studies suggests that TIP/IC is a sensitive diagnostic of intra-community trait
671 structure, and hence niche complementarity; this is despite each species occupying 50-
672 75% of the overall community trait space. Multi-trait *T-statistics* is likely to bring out a much
673 stronger signal of niche complementarity; developing techniques for combined analysis of
674 multiple traits would be the next step. Combined analysis of multiple taxa which are
675 functionally similar (e.g all moth families, or even other insect herbivores) provides another
676 open line of enquiry. The *T-statistic* metric for external filters, when used in the prescribed
677 manner, appears to be less sensitive. However, we inferred the presence of external
678 filtering by examining the directional variation of traits and metrics (including, ironically, the
679 internal filter metric) across the environmental gradient. This was possible because our
680 environmental gradient was large, smoothly varying, well sampled and quantitative (not
681 just categorical). Finally, this study developed a technique to measure body and wing
682 dimensions of free-ranging moths. With this technique one can generate large databases
683 of hundreds of thousands of individuals at relatively little expense, without having to gather
684 and manage a large specimen collection. Body and wing dimensions play an important
685 role in many physiological and ecological processes in moths. With their high species
686 diversity, abundance, ease of sampling, and key role as herbivores in ecosystems, moths
687 are excellent targets for community assembly studies. They are especially suited for

688 studies which require multi-epoch and multi-location sampling like ecosystem stability and
689 impact of environmental change on faunal populations.

Accepted Manuscript

690

References

- 691 1. Acharya, B.K., Sanders, N.J., Vijayan, L. and Chettri, B., 2011. Elevational gradients
692 in bird diversity in the eastern Himalaya: an evaluation of distribution patterns and
693 their underlying mechanisms. *PLoS One*, 6(12).
- 694 2. Ackerly, D.D., 2003. Community assembly, niche conservatism, and adaptive
695 evolution in changing environments. *International Journal of Plant Sciences*,
696 164(S3), pp.S165-S184.
- 697 3. Albert, C. H., Grassein, F., Schurr, F. M., Vieilledent, G., & Viole, C. (2011). When
698 and how should intraspecific variability be considered in trait-based plant ecology?.
699 *Perspectives in Plant Ecology, Evolution and Systematics*, 13(3), 217-225.
- 700 4. Alerstam, T., Rosén, M., Bäckman, J., Ericson, P.G. and Hellgren, O., 2007. Flight
701 speeds among bird species: allometric and phylogenetic effects. *PLoS Biol*, 5(8),
702 p.e197.
- 703 5. Allgeier, J.E., Adam, T.C. and Burkepile, D.E., 2017. The importance of individual
704 and species-level traits for trophic niches among herbivorous coral reef fishes.
705 *Proceedings of the Royal Society B: Biological Sciences*, 284(1856), p.20170307.
- 706 6. Athreya, R. and Singh, V., 1990. Scaling models for flight patterns and sexual
707 dimorphism in raptors. *Journal of the Bombay Natural History Society*, 87(2),
708 pp.210-217.
- 709 7. Athreya, R., 2006a. A new species of liocichla (Aves: Timaliidae) from Eaglenest
710 wildlife sanctuary, Arunachal Pradesh, India. *Indian Birds*, 2(4), pp.82-94.
- 711 8. Athreya, R., 2006b. Eaglenest biodiversity project (2003–2006): conservation
712 resources for Eaglenest wildlife sanctuary. Kaati Trust, Pune.
- 713 9. Azevedo, R.B., James, A.C., McCabe, J. and Partridge, L., 1998. Latitudinal
714 variation of wing: thorax size ratio and wing-aspect ratio in *Drosophila*
715 *melanogaster*. *Evolution*, 52(5), pp.1353-1362.
- 716 10. Baraloto, C., Hardy, O.J., Paine, C.T., Dexter, K.G., Cruaud, C., Dunning, L.T.,
717 Gonzalez, M.A., Molino, J.F., Sabatier, D., Savolainen, V. and Chave, J., 2012.
718 Using functional traits and phylogenetic trees to examine the assembly of tropical
719 tree communities. – *J. Ecol.*, 100(3), 690-701.
- 720 11. Baranovská, E. and Knapp, M., 2018. Steep converse Bergmann's cline in a carrion
721 beetle: Between-and within-population variation in body size along an elevational
722 gradient. *Journal of Zoology*, 304(4), pp.243-251.
- 723 12. Beck, E., Bendix, J., Kottke, I., Makeschin, F. and Mosandl, R. eds., 2008.
724 *Gradients in a tropical mountain ecosystem of Ecuador* (Vol. 198). Springer Science
725 & Business Media.
- 726 13. Beck, J. and Kitching, I.J., 2009. Drivers of moth species richness on tropical
727 altitudinal gradients: a cross-regional comparison. *Global Ecology and
728 Biogeography*, 18(3), pp.361-371.

729 14. Bhuyan, P., Khan, M.L. and Tripathi, R.S., 2003. Tree diversity and population
730 structure in undisturbed and human-impacted stands of tropical wet evergreen
731 forest in Arunachal Pradesh, Eastern Himalayas, India. *Biodiversity & Conservation*,
732 12(8), pp.1753-1773.

733 15. Blackburn, T.M., Gaston, K.J. and Loder, N., 1999. Geographic gradients in body
734 size: a clarification of Bergmann's rule. *Diversity and distributions*, 5(4), pp.165-174.

735 16. Bolnick, D.I., Amarasekare, P., Araújo, M.S., Bürger, R., Levine, J.M., Novak, M.,
736 Rudolf, V.H., Schreiber, S.J., Urban, M.C. and Vasseur, D.A., 2011. Why
737 intraspecific trait variation matters in community ecology. *Trends in ecology &*
738 *evolution*, 26(4), pp.183-192.

739 17. Brousseau, P.M., Gravel, D. and Handa, I.T., 2018. On the development of a
740 predictive functional trait approach for studying terrestrial arthropods. – *J. Anim.*
741 *Ecol.*, 87(5), 1209-1220.

742 18. Brown, J.H. and Maurer, B.A., 1989. Macroecology: the division of food and space
743 among species on continents. *Science*, 243(4895), pp.1145-1150.

744 19. Bryant, J.A., Lamanna, C., Morlon, H., Kerkhoff, A.J., Enquist, B.J. and Green, J.L.,
745 2008. Microbes on mountainsides: contrasting elevational patterns of bacterial and
746 plant diversity. *Proceedings of the National Academy of Sciences*, 105(Supplement
747 1), pp.11505-11511.

748 20. Butterfield, B.J. and Callaway, R.M., 2013. A functional comparative approach to
749 facilitation and its context dependence. – *Funct. Ecol.*, 27(4), 907-917.

750 21. Callaway, R.M., 1998. Competition and facilitation on elevation gradients in
751 subalpine forests of the northern Rocky Mountains, USA. *Oikos*, pp.561-573.

752 22. Captain, A., Deepak, V., Pandit, R., Bhatt, B. and Athreya, R., 2019. A new species
753 of pitviper (Serpentes: Viperidae: *Trimeresurus LacepÈde*, 1804) from West
754 Kameng district, Arunachal Pradesh, India. *Russian Journal of Herpetology*, 26(2).

755 23. Carmona, C.P., de Bello, F., Mason, N.W. and Lepš, J., 2016. Traits without
756 borders: integrating functional diversity across scales. *Trends in ecology &*
757 *evolution*, 31(5), pp.382-394.

758 24. Champion, S.H. and Seth, S.K., 1968. A revised survey of the forest types of India.
759 *A revised survey of the forest types of India*.

760 25. Choler, P., 2005. Consistent shifts in alpine plant traits along a mesotopographical
761 gradient. *Arctic, Antarctic, and Alpine Research*, 37(4), pp.444-453.

762 26. Cianciaruso, M.V., Batalha, M.A., Gaston, K.J. and Petchey, O.L., 2009. Including
763 intraspecific variability in functional diversity. *Ecology*, 90(1), pp.81-89.

764 27. Clark, J. (2010) Individuals and the variation needed for high species diversity in
765 forest trees. *Science* 327, 1129–1132

766 28. Clark, J.S., Bell, D., Chu, C., Courbaud, B., Dietze, M., Hersh, M., HilleRisLambers,
767 J., Ibáñez, I., LaDeau, S., McMahon, S. and Metcalf, J., 2010. High-dimensional

768 coexistence based on individual variation: a synthesis of evidence. *Ecological*
769 *Monographs*, 80(4), pp.569-608.

770 29. Classen, A., Steffan-Dewenter, I., Kindeketa, W.J. and Peters, M.K., 2017.
771 Integrating intraspecific variation in community ecology unifies theories on body size
772 shifts along climatic gradients. *Functional Ecology*, 31(3), pp.768-777.

773 30. Cushman, J.H., Lawton, J.H. and Manly, B.F., 1993. Latitudinal patterns in
774 European ant assemblages: variation in species richness and body size. *Oecologia*,
775 95(1), pp.30-37.

776 31. Danet, A., Anthelme, F., Gross, N. and Kéfi, S., 2018. Effects of indirect facilitation
777 on functional diversity, dominance and niche differentiation in tropical alpine
778 communities. *Journal of vegetation science*, 29(5), pp.835-846.

779 32. De Bello, F., Thuiller, W., Lepš, J., Choler, P., Clément, J.C., Macek, P., Sebastià,
780 M.T. and Lavorel, S., 2009. Partitioning of functional diversity reveals the scale and
781 extent of trait convergence and divergence. *Journal of Vegetation Science*, 20(3),
782 pp.475-486.

783 33. Dehling, D.M., Jordano, P., Schaefer, H.M., Böhning-Gaese, K. and Schleuning, M.,
784 2016. Morphology predicts species' functional roles and their degree of
785 specialization in plant-frugivore interactions. – *Proc R Soc Lond [Biol]*, 283(1823),
786 p.20152444.

787 34. Diaz, S., Cabido, M. and Casanoves, F., 1998. Plant functional traits and
788 environmental filters at a regional scale. *Journal of vegetation science*, 9(1), pp.113-
789 122.

790 35. Dillon, M.E., Frazier, M.R. and Dudley, R., 2006. Into thin air: physiology and
791 evolution of alpine insects. *Integrative and Comparative Biology*, 46(1), pp.49-61.

792 36. Ding, Y., Zang, R., Lu, X., Huang, J. and Xu, Y., 2019. The effect of environmental
793 filtering on variation in functional diversity along a tropical elevational gradient.
794 *Journal of Vegetation Science*, 30(5), pp.973-983.

795 37. Dudley, R., 2002. *The biomechanics of insect flight: form, function, evolution*.
796 Princeton University Press.

797 38. Enquist, B.J., Norberg, J., Bonser, S.P., Violle, C., Webb, C.T., Henderson, A., Sloat,
798 L.L. and Savage, V.M., 2015. Scaling from traits to ecosystems: developing a
799 general trait driver theory via integrating trait-based and metabolic scaling theories.
800 In *Advances in ecological research* (Vol. 52, pp. 249-318). Academic Press.

801 39. Fonseca, C.R., Overton, J.M., Collins, B. and Westoby, M., 2000. Shifts in trait-
802 combinations along rainfall and phosphorus gradients. *Journal of Ecology*, 88(6),
803 pp.964-977.

804 40. Frazier, M.R., Harrison, J.F., Kirkton, S.D. and Roberts, S.P., 2008. Cold rearing
805 improves cold-flight performance in *Drosophila* via changes in wing morphology.
806 *Journal of Experimental Biology*, 211(13), pp.2116-2122.

807 41. Funk, J.L., Larson, J.E., Ames, G.M., Butterfield, B.J., Cavender-Bares, J., Firn, J.,
808 Laughlin, D.C., Sutton-Grier, A.E., Williams, L. and Wright, J., 2017. Revisiting the

Holy Grail: using plant functional traits to understand ecological processes. *Biological Reviews*, 92(2), pp.1156-1173.

42. Ghosh-Harihar, M., 2013. Distribution and abundance of foliage-arthropods across elevational gradients in the east and west Himalayas. *Ecological research*, 28(1), pp.125-130.

43. Gilchrist, G.W. and Huey, R.B., 2004. Plastic and genetic variation in wing loading as a function of temperature within and among parallel clines in *Drosophila subobscura*. *Integrative and Comparative Biology*, 44(6), pp.461-470.

44. Grime, J.P., 2006. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. – *J. Veg. Sci.*, 17(2), 255-260.

45. Gusmão, P.H., Sena, P.H., Bernabé, T.N., Ouchi-Melo, L.S. and Gonçalves-Souza, T., 2020. Interspecific plant functional variation prevails over intraspecific variation in driving spider beta diversity. *Ecological Entomology*, 45(2), pp.202-212.

46. Hassall, C., 2015. Strong longitudinal variation in wing aspect ratio of a damselfly, *Calopteryx maculata* (Odonata: Zygoptera). – *PeerJ PrePrints*, 3, p.e998v1.

47. Heinrich, B., 1996. The thermal warriors: strategies of insect survival. Harvard University Press.

48. HilleRisLambers, J., Adler, P.B., Harpole, W.S., Levine, J.M. and Mayfield, M.M., 2012. Rethinking community assembly through the lens of coexistence theory. *Annual review of ecology, evolution, and systematics*, 43, pp.227-248.

49. Holt, B.G., Lessard, J.P., Borregaard, M.K., Fritz, S.A., Araújo, M.B., Dimitrov, D., Fabre, P.H., Graham, C.H., Graves, G.R., Jönsson, K.A. and Nogués-Bravo, D., 2013. An update of Wallace's zoogeographic regions of the world. – *Science*, 339(6115), 74-78.

50. Hubbell, S.P., 2001. *The unified neutral theory of biodiversity and biogeography* (MPB-32). Princeton University Press.

51. Hulshof, C.M., Violle, C., Spasojevic, M.J., McGill, B., Damschen, E., Harrison, S. and Enquist, B.J., 2013. Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude. – *J. Veg. Sci.*, 24(5), 921-931.

52. Jung, V., Violle, C., Mondy, C., Hoffmann, L. and Muller, S., 2010. Intraspecific variability and trait-based community assembly. – *J. Ecol.*, 98(5), 1134-1140.

53. Khalil, M.I., Gibson, D.J. and Baer, S.G., 2019. Functional response of subordinate species to intraspecific trait variability within dominant species. *Journal of Ecology*, 107(5), pp.2040-2053.

54. Kitching, I.J. 2019. Sphingidae Taxonomic Inventory, <http://sphingidae.myspecies.info/>, accessed on 20 May, 2016

55. Kitching, I.J., Kendrick, R. and Smetacek, P., 2014. A list of hawkmoth species

847 (Lepidoptera: Sphingidae) of India. *Nepal, Bhutan and Sri Lanka, including their*
848 *common names* [http://flutters.org/home/docs/Hawkmoths_of_India_et_al.pdf].
849 *Downloaded on, 18.*

850 56. Kraft, N.J. and Ackerly, D.D., 2010. Functional trait and phylogenetic tests of
851 community assembly across spatial scales in an Amazonian forest. *Ecological*
852 *monographs*, 80(3), pp.401-422.

853 57. Kraft, N.J., Valencia, R. and Ackerly, D.D., 2008. Functional traits and niche-based
854 tree community assembly in an Amazonian forest. – *Science*, 322(5901),580-582.

855 58. Laliberté, E., Legendre, P., Shipley, B. and Laliberté, M.E., 2014. Package ‘FD’.
856 Measuring functional diversity from multiple traits, and other tools for functional
857 ecology.

858 59. Lamanna, C., Blonder, B., Violle, C., Kraft, N.J., Sandel, B., Šímová, I., Donoghue,
859 J.C., Svenning, J.C., McGill, B.J., Boyle, B. and Buzzard, V., 2014. Functional trait
860 space and the latitudinal diversity gradient. – *Proc. Natl. Acad. Sci.*, 111(38),13745-
861 13750.

862 60. Lavorel, S., Grigulis, K., McIntyre, S., Williams, N.S., Garden, D., Dorrough, J.,
863 Berman, S., Quétier, F., Thébaud, A. and Bonis, A., 2008. Assessing functional
864 diversity in the field—methodology matters!. – *Funct. Ecol.*, 22(1),134-147.

865 61. Lavorel, S., Storkey, J., Bardgett, R.D., de Bello, F., Berg, M.P., Le Roux, X.,
866 Moretti, M., Mulder, C., Pakeman, R.J., Díaz, S. and Harrington, R., 2013. A novel
867 framework for linking functional diversity of plants with other trophic levels for the
868 quantification of ecosystem services. – *J. Veg. Sci.*, 24(5),942-948.

869 62. Le Bagousse-Pinguet, Y., de Bello, F., Vandewalle, M., Lepš, J. and Sykes, M.T.,
870 2014. Species richness of limestone grasslands increases with trait overlap:
871 evidence from within-and between-species functional diversity partitioning. – *J.*
872 *Ecol.*, 102(2),466-474.

873 63. Lentink, D., Müller, U.K., Stadhuis, E.J., De Kat, R., Van Gestel, W., Veldhuis,
874 L.L.M., Henningsson, P., Hedenstrom, A., Videler, J.J. and Van Leeuwen, J.L.,
875 2007. How swifts control their glide performance with morphing wings. *Nature*,
876 446(7139), pp.1082-1085.

877 64. Lill, J.T. and Marquis, R.J., 2003. Ecosystem engineering by caterpillars increases
878 insect herbivore diversity on white oak. *Ecology*, 84(3), pp.682-690.

879 65. Lindsey, C.C., 1966. Body sizes of poikilotherm vertebrates at different latitudes.
880 *Evolution*, 20(4), pp.456-465.

881 66. Luo, Y., Liu, J., Tan, S., Cadotte, M.W., Xu, K., Gao, L. and Li, D., 2016. Trait
882 variation and functional diversity maintenance of understory herbaceous species
883 coexisting along an elevational gradient in Yulong Mountain, Southwest China. –
884 *Plant Div.*, 38(6),303-311.

885 67. MacArthur, R. and Levins, R., 1967. The limiting similarity, convergence, and
886 divergence of coexisting species. – *Am. Nat.*, 101(921),377-385.

887 68. Maechler, M., Stahel, W., Ruckstuhl, A., Keller, C., Halvorsen, K., Hauser, A. and
888 Buser, C., 2019. Package 'sfsmisc'.

889 69. Marathe, A., Priyadarsanan, D.R., Krishnaswamy, J. and Shanker, K., 2020. Spatial
890 and climatic variables independently drive elevational gradients in ant species
891 richness in the Eastern Himalaya. *PLoS one*, 15(1), p.e0227628.

892 70. Mayfield, M.M. and Levine, J.M., 2010. Opposing effects of competitive exclusion
893 on the phylogenetic structure of communities. *Ecology letters*, 13(9), pp.1085-1093.

894 71. McCain, C.M., 2007. Area and mammalian elevational diversity. – *Ecology*,
895 88(1),76-86.

896 72. McGeachie, W.J., 1989. The effects of moonlight illuminance, temperature and wind
897 speed on light-trap catches of moths. *Bulletin of Entomological Research*, 79(2),
898 pp.185-192.

899 73. McNab, B.K., 2010. Geographic and temporal correlations of mammalian size
900 reconsidered: a resource rule. *Oecologia*, 164(1), pp.13-23.

901 74. Melo, D., Garcia, G., Hubbe, A., Assis, A.P. and Marroig, G., 2015. EvolQG-An R
902 package for evolutionary quantitative genetics. *F1000Research*, 4.

903 75. Mirza, Z.A., Bhosale, H.S., Phansalkar, P.U., Sawant, M., Gowande, G.G. and
904 Patel, H., 2020. A new species of green pit vipers of the genus *Trimeresurus*
905 Lacépède, 1804 (Reptilia, Serpentes, Viperidae) from western Arunachal Pradesh,
906 India. *Zoosystematics and Evolution*, 96, p.123.

907 76. Moretti, M., Dias, A.T., De Bello, F., Altermatt, F., Chown, S.L., Azcárate, F.M., Bell,
908 J.R., Fournier, B., Hedde, M., Hortal, J. and Ibanez, S., 2017. Handbook of
909 protocols for standardized measurement of terrestrial invertebrate functional traits.
910 *Functional Ecology*, 31(3), pp.558-567.

911 77. Mouchet, M.A., Villéger, S., Mason, N.W. and Mouillot, D., 2010. Functional
912 diversity measures: an overview of their redundancy and their ability to discriminate
913 community assembly rules – . *Funct. Ecol.*, 24(4),867-876.

914 78. Mouillot, D., Stubbs, W., Faure, M., Dumay, O., Tomasini, J.A., Wilson, J.B. and Do
915 Chi, T., 2005. Niche overlap estimates based on quantitative functional traits: a new
916 family of non-parametric indices. – *Oecologia*, 145(3),345-353.

917 79. Mungee, M. and Athreya, R., 2020, Rapid photogrammetry of morphological traits of
918 free-ranging moths. *Ecological Entomology*, 45: 911-923. doi:10.1111/een.12907

919 80. Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A. and Kent, J.,
920 2000. Biodiversity hotspots for conservation priorities. *Nature*, 403(6772), p.853.

921 81. Nachtigall, W., 1985. Calliphora as a model system for analysing insect flight.
922 *Comprehensive insect physiology, biochemistry and pharmacology*, 5(15), pp.501-
923 605.

924 82. Neyret, M., Bentley, L.P., Oliveras, I., Marimon, B.S., Marimon-Junior, B.H., Almeida
925 de Oliveira, E., Barbosa Passos, F., Castro Ccoscco, R., dos Santos, J., Matias

926 Reis, S. and Morandi, P.S., 2016. Examining variation in the leaf mass per area of
927 dominant species across two contrasting tropical gradients in light of community
928 assembly – . *Ecol. Evol.*, 6(16),5674-5689.

929 83. Norberg, U.M., 1985. Evolution of vertebrate flight: an aerodynamic model for the
930 transition from gliding to active flight. *The American Naturalist*, 126(3), pp.303-327.

931 84. Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Stevens, M.H.H., Oksanen, M.J.
932 and Suggs, M.A.S.S., 2007. The vegan package. Community ecology package,
933 10,631-637.

934 85. Orme, C.D.L., Davies, R.G., Burgess, M., Eigenbrod, F., Pickup, N., Olson, V.A.,
935 Webster, A.J., Ding, T.S., Rasmussen, P.C., Ridgely, R.S. and Stattersfield, A.J.,
936 2005. Global hotspots of species richness are not congruent with endemism or
937 threat. – *Nature*, 436(7053), p.1016.

938 86. Outreman, Y., Andrade, T.O., Louâpre, P., Krespi, L., Violle, C. and Van Baaren, J.,
939 2018. Multi-scale and antagonist selection on life-history traits in parasitoids: A
940 community ecology perspective. *Func. Ecol.*, 32(3), pp.736-751.

941 87. Paine, C.T., Baraloto, C., Chave, J. and Hérault, B., 2011. Functional traits of
942 individual trees reveal ecological constraints on community assembly in tropical rain
943 forests. *Oikos*, 120(5), pp.720-727.

944 88. Pennycuick, C.J., 1971. Gliding flight of the dog-faced bat *Rousettus aegyptiacus*
945 observed in a wind tunnel. *Journal of Experimental Biology*, 55(3), pp.833-845.

946 89. Pigot, A.L., Trisos, C.H. and Tobias, J.A., 2016. Functional traits reveal the
947 expansion and packing of ecological niche space underlying an elevational diversity
948 gradient in passerine birds. – *Proc R Soc Lond [Biol]*, 283(1822), p.20152013.

949 90. Price, T.D., Hooper, D.M., Buchanan, C.D., Johansson, U.S., Tietze, D.T., Alström,
950 P., Olsson, U., Ghosh-Harihar, M., Ishtiaq, F., Gupta, S.K. and Martens, J., 2014.
951 Niche filling slows the diversification of Himalayan songbirds. – *Nature*, 509(7499),
952 p.222.

953 91. Quimbayo, N., Serna, F., Olivares, T.S. and Angulo, A.O., 2010. Nóctuidos
954 (Lepidoptera) en cultivos de flores colombianas. *Revista Colombiana de*
955 *Entomología*, 36(1), pp.38-46.

956 92. R Development Core Team, 2015, A language and environment for statistical
957 computing. R Foundation for Statistical Computing, Vienna, Austria. URL
958 <http://www.R-project.org/>.

959 93. Rana, S.K., Price, T.D. and Qian, H., 2019. Plant species richness across the
960 Himalaya driven by evolutionary history and current climate. *Ecosphere*, 10(11),
961 p.e02945.

962 94. Rodríguez, M.Á., Olalla-Tárraga, M.Á. and Hawkins, B.A., 2008. Bergmann's rule
963 and the geography of mammal body size in the Western Hemisphere. *Global*
964 *Ecology and Biogeography*, 17(2), pp.274-283.

965 95. Rohner, P.T., Bächli, G., Pollini Paltrinieri, L., Duelli, P., Obrist, M.K., Jochmann, R.
966 and Blanckenhorn, W.U., 2015. Distribution, diversity gradients and Rapoport's
967 elevational rule in the black scavenger flies of the Swiss Alps (Diptera: Sepsidae).
968 *Insect Conservation and Diversity*, 8(4), pp.367-376.

969 96. Rohner, P.T., Pitnick, S., Blanckenhorn, W.U., Snook, R.R., Bächli, G. and Lüpold,
970 S., 2018. Interrelations of global macroecological patterns in wing and thorax size,
971 sexual size dimorphism, and range size of the Drosophilidae. *Ecography*, 41(10),
972 pp.1707-1717.

973 97. Schulze, C.H. and Fiedler, K., 2003. Vertical and temporal diversity of a species-rich
974 moth taxon in Borneo. *Arthropods of tropical forests: spatio-temporal dynamics and*
975 *resource use in the canopy*, pp.69-85.

976 98. Schumm, M., White, A. E., Supriya, K., Price, T. D., 2020, Ecological Limits as the
977 Driver of Bird Species Richness Patterns along the East Himalayan Elevational
978 Gradient, *The American Naturalist*, 195.

979 99. Scoble, M.J. and Hausmann, A., 2007. Online list of valid and available names of
980 the Geometridae of the World. *Lepidoptera Barcode of Life*, iBOL.

981 100. Sinha, A., Datta, A., Madhusudhan, M. D., Mishra, C., 2005. *Macaca*
982 *munzala*: A New Species from Western Arunachal Pradesh, Northeastern India.
983 *International Journal of Primatology*, 26, 977-989.

984 101. Sondhi, S. and Ohler, A., 2011. A blue-eyed Leptobrachium (Anura:
985 Megophryidae) from Arunachal Pradesh, India. *Zootaxa*, 2912(1), pp.28-36.

986 102. Spasojevic, M.J. and Suding, K.N., 2012. Inferring community assembly
987 mechanisms from functional diversity patterns: the importance of multiple assembly
988 processes. – *J. Ecol.*, 100(3),652-661.

989 103. Subedi, S.C., Hogan, J.A., Ross, M.S., Sah, J.P. and Baraloto, C., 2019.
990 Evidence for trait-based community assembly patterns in hardwood hammock
991 forests. *Ecosphere*, 10(12), p.e02956.

992 104. Suding, K.N. and Goldstein, L.J., 2008. Testing the Holy Grail framework:
993 using functional traits to predict ecosystem change. *New Phytologist*, 180(3),
994 pp.559-562.

995 105. Supriya, K., Price, T.D. and Moreau, C.S., 2020. Competition with
996 insectivorous ants as a contributor to low songbird diversity at low elevations in the
997 eastern Himalaya. *Ecology and Evolution*, 10(10), pp.4280-4290.

998 106. Surya, G.S. and Keitt, T.H., 2019. Altitudinal limits of Eastern Himalayan
999 birds are created by competition past and present. *PLoS one*, 14(7), p.e0217549.

1000 107. Swenson, N.G. and Enquist, B.J., 2007. Ecological and evolutionary
1001 determinants of a key plant functional trait: wood density and its community-wide
1002 variation across latitude and elevation. *American journal of botany*, 94(3), pp.451-
1003 459.

1004 108. Taudiere, A. and Violle, C., 2016. cati: an R package using functional traits to
1005 detect and quantify multi-level community assembly processes. – *Ecography*,

1006 39(7),699-708.

1007 109. Van Voorhies, W.A., 1996. Bergmann size clines: a simple explanation for
1008 their occurrence in ectotherms. *Evolution*, 50(3), pp.1259-1264.

1009 110. Villéger, S., Mason, N.W. and Mouillot, D., 2008. New multidimensional
1010 functional diversity indices for a multifaceted framework in Funct. Ecol.. – *Ecology*,
1011 89(8),2290-2301.

1012 111. Violle, C., Enquist, B.J., McGill, B.J., Jiang, L.I.N., Albert, C.H., Hulshof, C.,
1013 Jung, V. and Messier, J., 2012. The return of the variance: intraspecific variability in
1014 community ecology. – *Trends Ecol. Evol.*, 27(4),244-252.

1015 112. Wang, Y.S., Chua, C.J., Maestre, F.T. & Wang, G. 2008. On the relevance of
1016 facilitation in alpine meadow communities: an experimental assessment with
1017 multiple species differing in their ecological optimum. . *Acta Oecologica –*
1018 *International Journal of Ecology* 33: 108–113.

1019 113. Weiher, E. and Keddy, P.A., 1995. Assembly rules, null models, and trait
1020 dispersion: new questions from old patterns. *Oikos*, pp.159-164.

1021 114. Weiher, E., Clarke, G.P. and Keddy, P.A., 1998. Community assembly rules,
1022 morphological dispersion, and the coexistence of plant species. – *Oikos*,309-322.

1023 115. Weiher, E., Freund, D., Bunton, T., Stefanski, A., Lee, T. and Bentivenga, S.,
1024 2011. Advances, challenges and a developing synthesis of ecological community
1025 assembly theory. *Philosophical Transactions of the Royal Society B: Biological*
1026 *Sciences*, 366(1576), pp.2403-2413.

1027 116. Willott, S.J., 2001. Species accumulation curves and the measure of
1028 sampling effort. *Journal of applied ecology*, 38(2), pp.484-486.

1029 117. Wu, S., Chang, C.M., Mai, G.S., Rubenstein, D.R., Yang, C.M., Huang, Y.T.,
1030 Lin, H.H., Shih, L.C., Chen, S.W. and Shen, S.F., 2019. Artificial intelligence reveals
1031 environmental constraints on colour diversity in insects. *Nature communications*,
1032 10(1), pp.1-9.

1033 118. Xavier-Jordani, M., Mouquet, N., Casatti, L., Menin, M., de Cerqueira Rossa-
1034 Feres, D. and Albert, C.H., 2019. Intraspecific and interspecific trait variability in
1035 tadpole meta-communities from the Brazilian Atlantic rainforest. – *Ecol. Evol.*,
1036 9(7),4025-4037.

1037 119. Zamora-Camacho, F.J., Reguera, S. and Moreno-Rueda, G., 2014.
1038 Bergmann's Rule rules body size in an ectotherm: heat conservation in a lizard
1039 along a 2200-metre elevational gradient. *Journal of evolutionary biology*, 27(12),
1040 pp.2820-2828.

1041 120. Zorger, B.B., Tabarelli, M., de Queiroz, R.T., Rosado, B.H. and Pinho, B.X.,
1042 2019. Functional organization of woody plant assemblages along precipitation and
1043 human disturbance gradients in a seasonally dry tropical forest. *Biotropica*, 51(6),
1044 pp.838-850.

1045 **Table 1. Linear regression of hawkmoth community traits with elevation**

1046 (a) The community mean trait value was calculated using the population mean trait values
 1047 weighted by local abundance.
 1048 (b) The overlap was measured for the trait kernel distributions of pairs of communities and
 1049 regressed against the elevational separation between them.

1050

		Intercept \pm SE	Slope \pm SE	Adj. R^2	p
Community mean trait value with elevation					
Body mass		1.78 \pm 0.10	(1.37 \pm 0.57) $\times 10^{-4}$	0.28	< 0.05
Wing loading	with 200 m	(6.21 \pm 0.22) $\times 10^{-3}$	(-2.33 \pm 1.32) $\times 10^{-7}$	0.15	0.10
	without 200 m	(5.78 \pm 0.12) $\times 10^{-3}$	(-1.34 \pm 6.75) $\times 10^{-8}$	-0.10	0.85
Wing aspect ratio		3.44 \pm 0.03	(6.37 \pm 1.35) $\times 10^{-5}$	0.64	< 0.005
Trait distribution overlap with elevational separation					
Body mass		0.88 \pm 0.02	(-6.30 \pm 1.37) $\times 10^{-5}$	0.21	< 0.005
Wing loading		0.91 \pm 0.03	(-5.05 \pm 2.31) $\times 10^{-5}$	0.05	< 0.05
Wing aspect ratio		0.90 \pm 0.01	(-4.61 \pm 0.89) $\times 10^{-5}$	0.25	< 0.005

1051

1052 **Table 2: Linear regression of *T*-statistic parameters with elevation**1053 The regressions which are statistically significant with $p < 0.1$ are in bold font.

Parameter	Trait		Intercept \pm SE	Slope \pm SE	Adj. R^2	p
σ_{IP}^2	Body mass		$(8.56 \pm 0.99) \times 10^{-3}$	$(-6.16 \pm 5.87) \times 10^{-7}$	0.01	0.32
	Wing loading		$(5.68 \pm 0.72) \times 10^{-3}$	$(-6.92 \pm 4.27) \times 10^{-7}$	0.12	0.13
	Wing aspect ratio		$(1.36 \pm 0.19) \times 10^{-3}$	$(-1.70 \pm 1.12) \times 10^{-7}$	0.10	0.16
σ_{IC}^2	Body mass		$(3.47 \pm 0.58) \times 10^{-2}$	$(-1.35 \pm 3.45) \times 10^{-6}$	-0.08	0.70
	Wing loading	with 200 m	$(1.31 \pm 0.14) \times 10^{-2}$	$(-2.87 \pm 0.82) \times 10^{-6}$	0.49	0.004
		without 200 m	$(1.10 \pm 0.01) \times 10^{-2}$	$(-1.79 \pm 0.68) \times 10^{-6}$	0.35	0.03
TIP/IC $(\sigma_{IIP}^2 / \sigma_{IIC}^2)$	Body mass		0.257 \pm 0.041	$(-2.43 \pm 2.41) \times 10^{-5}$	0.001	0.36
	Wing loading		0.427 \pm 0.079	$(8.67 \pm 4.69) \times 10^{-5}$	0.17	0.09
	Wing aspect ratio		0.671 \pm 0.077	$(-8.76 \pm 4.61) \times 10^{-5}$	0.18	0.08
SES of TIP/IC	Body mass		-5.543 \pm 0.459	$(0.58 \pm 0.27) \times 10^{-3}$	0.22	0.06
	Wing loading		-3.920 \pm 0.421	$(0.87 \pm 0.25) \times 10^{-3}$	0.48	<0.005
	Wing aspect ratio		-2.070 \pm 0.427	$(0.18 \pm 0.25) \times 10^{-3}$	-0.04	0.49
SES of TIC/IR	Body mass		-0.944 \pm 1.458	$(0.41 \pm 0.87) \times 10^{-3}$	-0.07	0.64
	Wing loading		3.750 \pm 1.543	$(-0.31 \pm 0.09) \times 10^{-2}$	0.47	<0.05
	Wing aspect ratio		-0.247 \pm 1.12	$(0.93 \pm 6.65) \times 10^{-4}$	-0.09	0.89
SES of TPC/PR	Body mass		-0.172 \pm 0.284	$(0.12 \pm 0.17) \times 10^{-3}$	-0.04	0.49
	Wing loading		0.375 \pm 0.252	$(-0.32 \pm 0.15) \times 10^{-3}$	0.23	0.05
	Wing aspect ratio		0.302 \pm 0.698	$(-0.17 \pm 0.41) \times 10^{-3}$	-0.07	0.69

1054

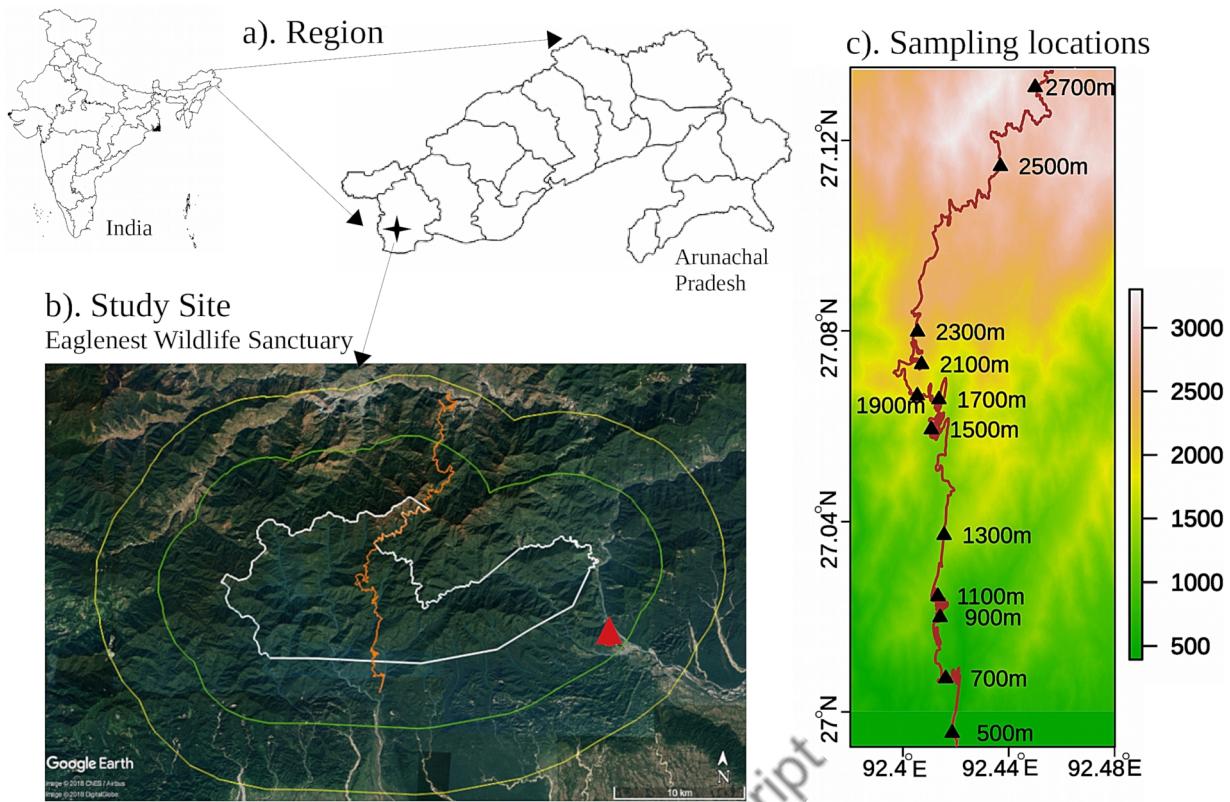
1055 Note: $T_{IC/IR}$ and σ_{IC}^2 differ only by the factor σ_{IR}^2 , which is a property of the region (value for body mass:1056 3.704×10^{-2} ; wing area: 0.996×10^{-2} ; wing aspect ratio: 0.209×10^{-2}) and hence the same for all communities.

1057

1058 **Table 3. Linear regression of *T*-statistic parameters with species richness**

1059 Species richness was calculated from the rarefaction curves. The regressions which are
 1060 statistically significant with $p < 0.1$ are in bold font.

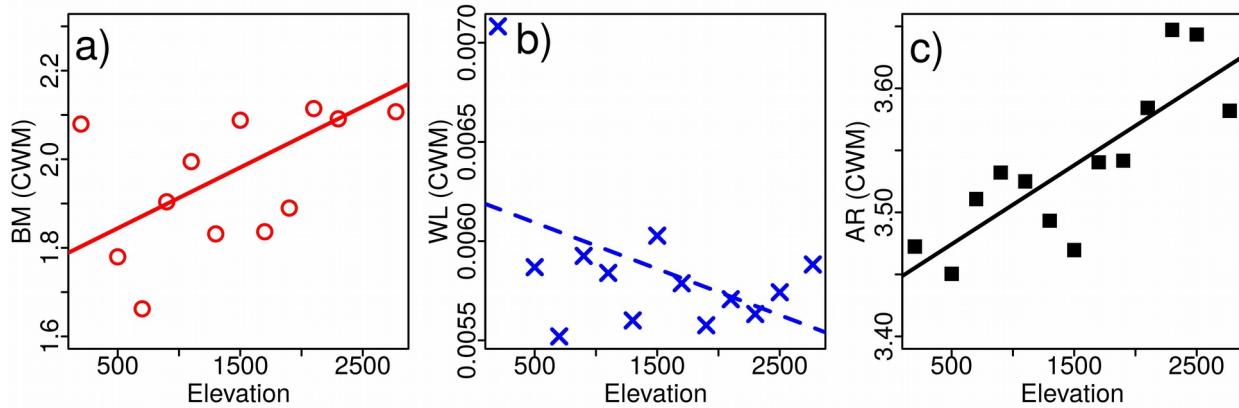
1061


Parameter	Trait	Intercept \pm SE	Slope \pm SE	Adj. R^2	p
σ^2_{IP}	Body mass	$(5.38 \pm 2.39) \times 10^{-3}$	$(6.53 \pm 6.79) \times 10^{-5}$	-0.01	0.36
	Wing loading	$(2.87 \pm 1.84) \times 10^{-3}$	$(5.13 \pm 5.23) \times 10^{-5}$	-0.003	0.35
	Wing aspect ratio	$(0.78 \pm 0.49) \times 10^{-3}$	$(0.93 \pm 1.38) \times 10^{-5}$	-0.05	0.52
σ^2_{IC}	Body mass	$(3.16 \pm 1.39) \times 10^{-2}$	$(1.46 \pm 3.96) \times 10^{-4}$	-0.08	0.72
	Wing loading	$(0.69 \pm 4.10) \times 10^{-3}$	$(2.34 \pm 1.17) \times 10^{-4}$	0.20	0.07
	Wing aspect ratio	$(2.27 \pm 0.70) \times 10^{-3}$	$-(0.54 \pm 1.98) \times 10^{-5}$	-0.08	0.79
$T_{IP/IC}$	Body mass	0.17 ± 0.10	$(1.43 \pm 2.86) \times 10^{-3}$	-0.07	0.63
	Wing loading	0.83 ± 0.20	$-(7.88 \pm 5.68) \times 10^{-3}$	0.07	0.19
	Wing aspect ratio	0.33 ± 0.20	$(6.02 \pm 5.82) \times 10^{-3}$	0.01	0.32
SES of $T_{IP/IC}$	Body mass	-2.78 ± 1.17	$-(5.49 \pm 3.32) \times 10^{-2}$	0.13	0.13
	Wing loading	0.01 ± 1.23	$-(7.59 \pm 3.48) \times 10^{-2}$	0.24	0.05
	Wing aspect ratio	-2.67 ± 1.04	$(0.97 \pm 2.96) \times 10^{-2}$	-0.08	0.75
SES of $T_{IC/IR}$	Body mass	-1.75 ± 3.50	$(4.13 \pm 9.96) \times 10^{-2}$	-0.07	0.69
	Wing loading	-9.12 ± 4.66	$(2.37 \pm 1.32) \times 10^{-1}$	0.16	0.10
	Wing aspect ratio	0.69 ± 2.67	$-(2.31 \pm 7.60) \times 10^{-2}$	-0.08	0.77

1062

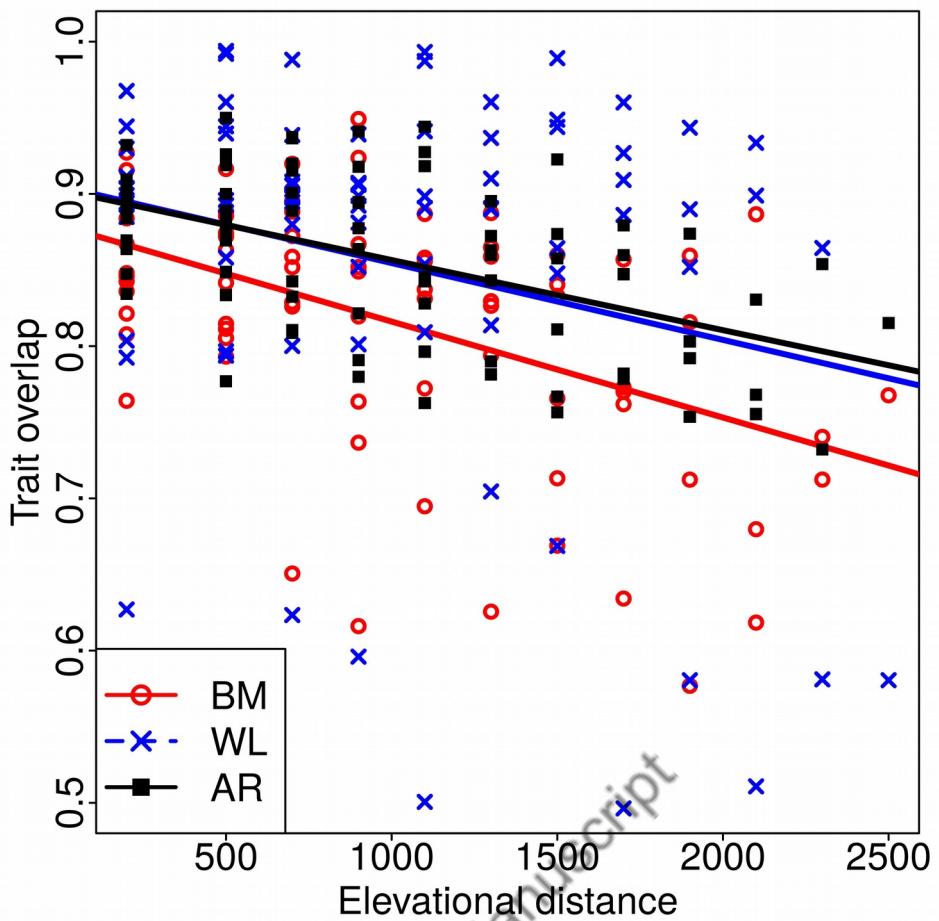
1063 Note: TIC/IR and σ^2_{IC} differ only by the factor σ^2_{IR} , which is a property of the region (value for body mass:

1064 3.704×10^{-2} ; wing area: 0.996×10^{-2} ; wing aspect ratio: 0.209×10^{-2}) and hence the same for all communities.

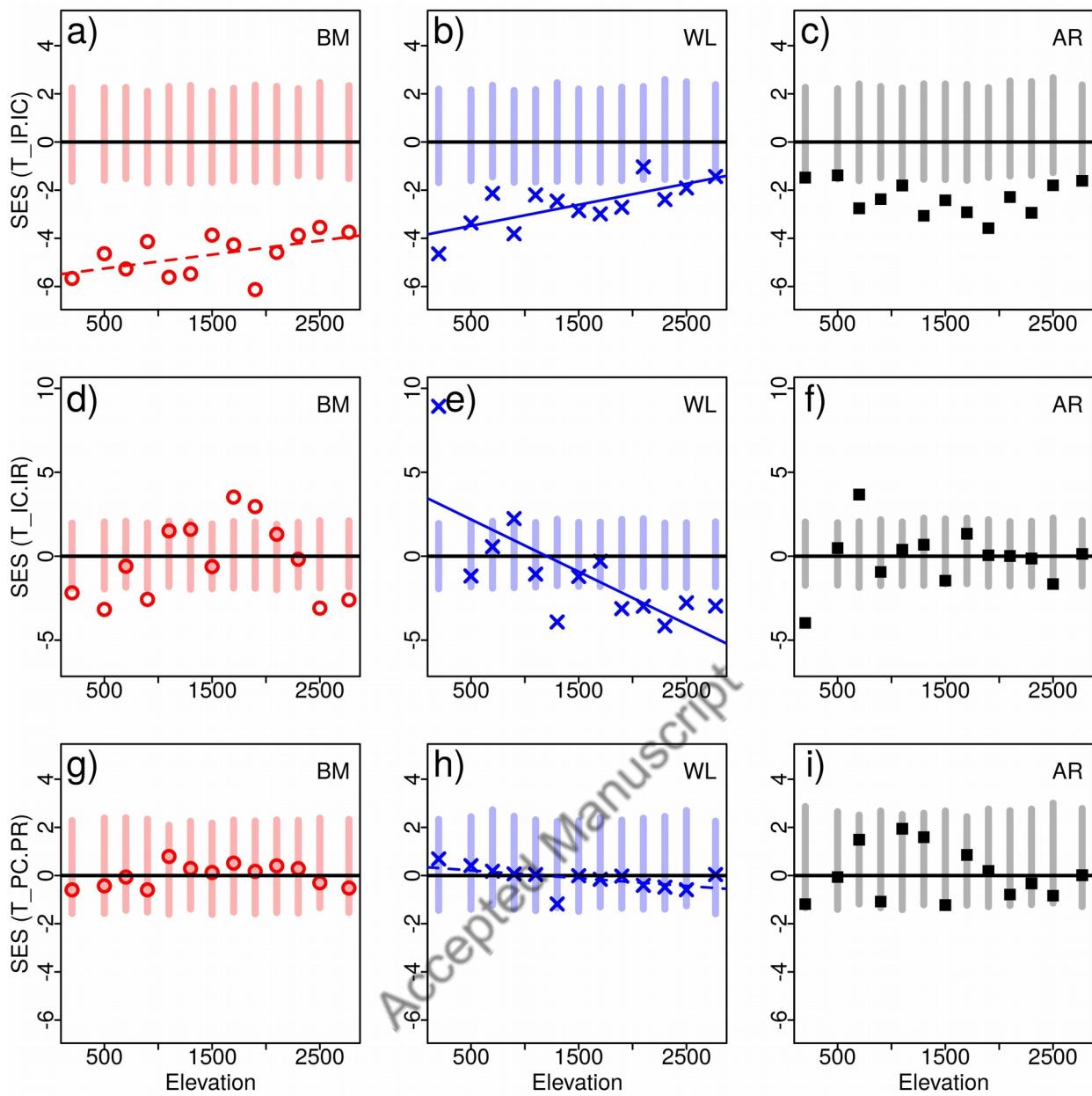

1065

1066 **Figure 1. Study site in Eaglenest wildlife sanctuary, India.**

1067 a). Location of the study site in West Kameng district, Arunachal Pradesh, north-east India
 1068 b). A google earth image of Eaglenest Wildlife Sanctuary with its boundary marked in
 1069 white, and that of its 5km buffer strip in green. The dirt track running through the sanctuary,
 1070 shown in orange, traverses elevations from 100 m in the south to the Eaglenest pass at
 1071 2780 m and down to 1200 m to the north. The 200 m sampling location, which is outside
 1072 the wildlife sanctuary, is marked by a red triangle. c). Digital elevation map showing the
 1073 Eaglenest track and the sampling locations between 500m and 2700m.


1074

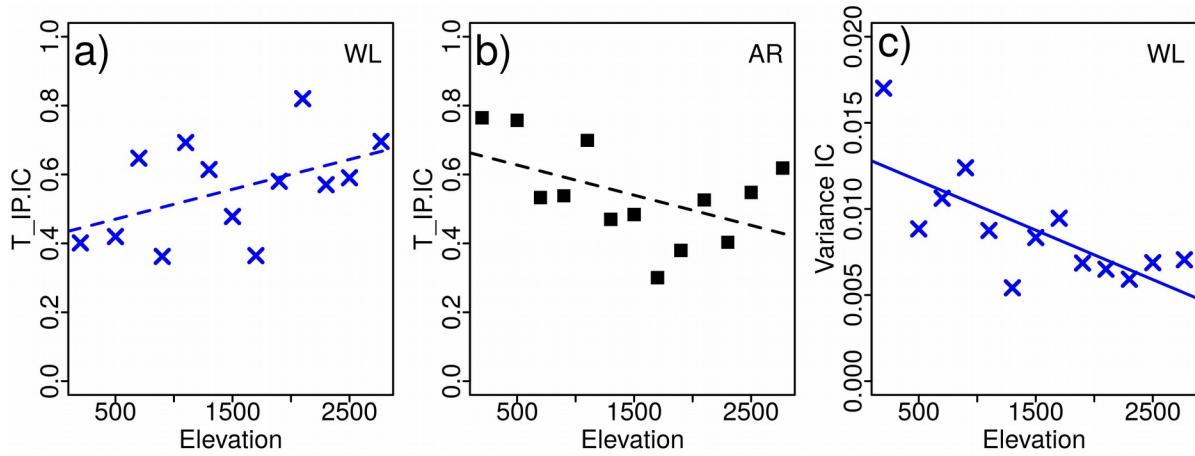
1076 **Figure 2. Relationship between hawkmoth community mean trait and elevation**


1077 The plots show the change in community weighted means of a). body mass (BM), b). wing
 1078 loading (WL) and c). wing aspect ratio (AR) plotted against elevation. The community
 1079 mean values were calculated using the population-specific mean trait for each species in a
 1080 community. The dashed and solid lines indicate regression fits significant at the 90% ($p <$
 1081 0.1) and 95% level ($p < 0.05$) levels, respectively. The regression parameters are in Table
 1082 1.

1083

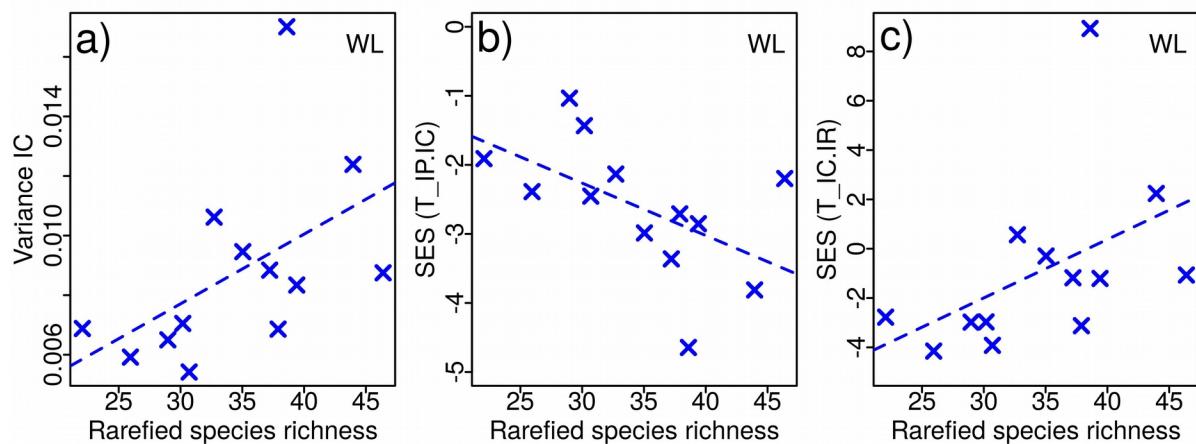
1085 **Figure 3. Relationship between hawk moth community trait overlap and elevational
1086 distance**

1087 The plot shows the scatter and the regression lines for the relationship between the
1088 overlap in trait distribution functions for pairs of communities and the elevational distance
1089 between them. The three traits plotted are body mass (BM), wing loading (WL), and wing
1090 aspect ratio (AR). The overlap for a pair of communities was calculated from the area of
1091 intersection of their trait kernel density distributions. The solid lines indicate regression fits
1092 significant at the 95% level ($p < 0.05$) levels. The regression parameters are in Table 1.


1093 **Figure 4. T-statistics of hawkmoth functional traits across an elevational/ gradient.**

1094 The plots show the standardised effect sizes (SES) of *T-statistics* metrics for body mass
 1095 (BM), wing loading (WL), and wing aspect ratio (AR) for each of the 13 elevational
 1096 communities. The vertical bars represent the 95% distribution of simulated null
 1097 communities, and the dots are the observed values. The metrics are variance ratios of (a)
 1098 TIP/IC: intra-population to intra-community (b) TIC/IR: intra-community to regional,
 1099 assessed using individual trait values, and (c) TPC/PR: intra-community to regional,
 1100 assessed using population mean values. The dashed and solid lines indicate regression
 1101 fits significant at the 90% ($p < 0.1$) and 95% level ($p < 0.05$) levels, respectively. The

1102 regression parameters are in Table 2.


1103

Accepted Manuscript

1105 **Figure 5. *T*-statistic parameters of hawkmoth functional traits across an elevational**
 1106 **gradient** The plots show the *T*-statistic parameters which have a statistically significant
 1107 relationship with elevation: (a) intra-population to intra-community variance ratio ($T_{IP/IC}$) of
 1108 wing loading (b) intra-population to intra-community variance ratio ($T_{IP/IC}$) of wing aspect
 1109 ratio, and (c) intra-community variance (σ^2_{IC}) of wing loading. The dashed and solid lines
 1110 indicate regression fits significant at the 90% ($p < 0.1$) and 95% level ($p < 0.05$) levels,
 1111 respectively. The regression parameters are in Table 2.

1112

1114 **Figure 6. *T*-statistic parameters of hawkmoth functional traits across a species**
 1115 **richness gradients.** The plots show the *T*-statistic metrics which have a statistically
 1116 significant relationship with species richness: (a) intra-community variance (σ^2_{IC}) of wing
 1117 loading (b) SES of intra-population to intra-community variance ratio (TIP/IC) of wing
 1118 loading, and (c) SES of intra-community to regional variance ratio (TIC/IR) of wing loading.
 1119 The dashed and solid lines indicate regression fits significant at the 90% ($p < 0.1$) and
 1120 95% level ($p < 0.05$) levels, respectively. The regression parameters are in Table 3.

1121 **Data Accessibility Statement**

1122 Species trait data and environmental variables are made available via the online
1123 Supporting information.

1124

1125 **Competing interest statement:**

1126 The authors declare that they have no conflict of interest.

1127

1128 **Author contributions:**

1129 MM conceived this particular investigation into traits, and performed the analysis. RA is the
1130 PI of the larger moth diversity project, and supervised the analysis. All the rest, including
1131 collection and curation of field and trait data, and manuscript writing were shared by both.

1132

1133 **Acknowledgments:**

1134 The authors would like to thank Deepak Barua for stimulating our interest in functional
1135 ecology and for the several rounds of discussions that led to the synthesis of this paper.

1136 We thank the Forest Department of Arunachal Pradesh for their assistance and research
1137 permits (CWL/G/13(95)/2011-12/Pt.II/660-62 during 2011-2015). This work would not have
1138 been possible without the enormous support of diverse kinds provided by Puspala
1139 Sharma, Mr. Indi Glow, Nima Tsering and other members of the Singchung Bugun
1140 community. This work was partly funded by the Department of Science and Technology,
1141 Government of India (Grant No. SR/SO/AS66/2011) and by the Nadathur Trust, Bengaluru.
1142 PhD scholarship for MM was funded by Indian Institute of Science Education and
1143 Research (IISER-Pune).